

FR-A700 Variable Frequency Drive

World-class FA Products

Comprehensive functions to guarantee faster production cycles with outstanding speed constancy and dynamic performance

Many key components with 10-year design guarantée a long service life

PLC inside as standard

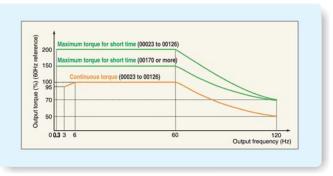
Highest Level of Driving Performance

(1) Exhibit best performance of the general-purpose motor (real sensorless vector control)

High accuracy/fast response speed operation by the vector control can be performed with a general-purpose motor without encoder.

 Maximum of 200% high torque can be generated at an ultra low speed of 0.3Hz (Type 00023 to 00126).

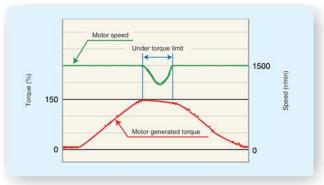
■ Speed Control


Speed control range 1:200 (0.3Hz to 60Hz driving only)

Speed response 120rad/s

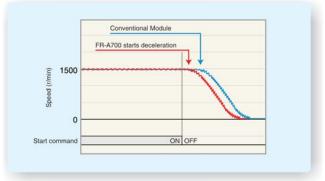
■ Torque Control

Torque control range 1:20
Absolute torque accuracy ± 20%


^{*} Since torque control can not be performed in the low speed regeneration region and at a low speed with light load, use the vector control with encoder.

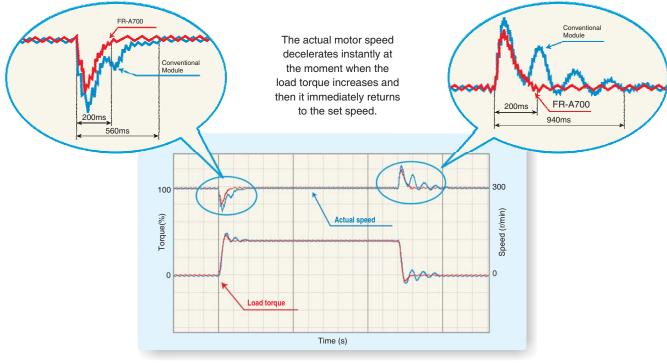
Example of torque characteristic under real sensorless vector control

1. Torque limit function


Torque limit function is effective to prevent machine from damage (Grinding machine tools etc.) against the sudden torque disturbance.

Example of torque limit characteristic

2. Input response time reduced


The delay to the input command has been minimized. The response time has been reduced to half as compared to the conventional model. It is suitable for cycle-operation applications.

Example of input command signal response characteristic

3. Quick response to fluctuating load

Torque response level to the sudden load fluctuation has been greatly improved as compared to the conventional model. The motor speed variation is minimized to maintain a constant speed. It is suitable for a sawmill machine, etc.

Example of actual speed variation when a load is instantaneously applied FR-A700 series under real sensorless vector control conventional series under advanced magnetic flux vector control

(2) Higher accuracy operation with encoder (vector control)

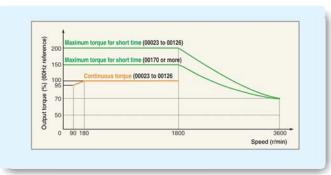
Vector control operation can be performed using a motor with encoder. Torque control/position control as well as fast response/high accuracy speed control (zero speed control, servo lock) can be realized with the inverter.

- *1 A plug-in option for encoder feed back control (FR-A7AP) is necessary.
- *2 Only a pulse train+code system is employed for pulse command system when performing position control with an inverter and the FR-A7AP. The maximum pulse input is 100kpps.

■ Speed control

Speed control range
Speed variation rate
Speed response

1:1500 (both driving/regeneration 3


± 0.01% (100% means 3000r/min)

300rad/s (with model adaptive speed control)

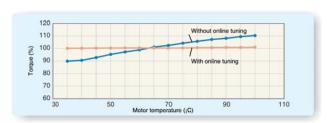
*3 Regeneration unit (option) is necessary for regeneration

■ Torque control

Torque control range 1:50
Absolute torque accuracy ± 10%⁴
Repeated torque accuracy ± 5%⁴

Example of torque characteristics under vector control

1. Easy gain tuning


Since the load inertia of the motor is automatically estimated online to calculate the optimum speed control gain and position loop gain.

Comparison of the speed accuracy before and after the load inertia estimation

2. Online auto tuning

Online auto tune feature compensated for motor temperature. This operation is appropriate for applications such as a winder/printing machine (tension control) which is controlled by torque.

Example of motor temperature-torque characteristics

(3) V/F control and advanced magnetic flux vector control operations available

V/F control Advanced magnetic flux vector control

PLC as

standard

Since V/F control and advanced magnetic flux vector control operations are also available, you can replace the conventional model without anxiety with the inverter.

Complement: list of functions according to driving control method

Control Method	Speed Control	Torque Control	Position Control	Speed Control Range	Speed Response	Applied Motor
V/F	0	×	×	1:10 (6 to 60Hz : Driving)	10 to 20rad/s	General-purpose motor (without encoder)
Advanced magnetic flux vector	0	×	×	1:120 (0.5~60Hz : Driving)	20 to 30rad/s	General-purpose motor (without encoder)
Real sensorless vector	0	0	×	1:200 (0.3~60Hz : Driving)	120rad/s	General-purpose motor (without encoder)
Vector (FR-A7AP is necessary)	(zero speed control, servo lock)	0	<u></u> *5	1:1500 (0.04~60Hz Both driving/regeneration)*6	300rad/s	General-purpose motor (with encoder) Dedicated motor

^{*5} Only a pulse train+code method is employed for pulse command method when performing position control with an inverter and the FR-A7AP. The maximum pulse input is 100kpps.

7

Built in PLC function

The FR-A700 also has an integrated PLC function that gives the customer the ability to adapt the FR-A700's performance to his individual needs. Because of this, many small applications can now be completely

handled by the FR-A700 inverter without any other control device. Programming the PLC function is simple and easy when using Mitsubhishi's GX Developer programming software.

Improved Usability with Full of Useful Functions

- More advanced auto tuning
- Enhanced PID function-dancer control
- Power failure deceleration stop function/original operation continuation at instantaneous power-failure
- Regeneration avoidance function

- Built-in brake transistor (Type 00023 to 00620 built-in brake resistor)
- Pulse train input
- Enhanced I/O function
- Multiple Overload rating
- Traverse function

^{*4} Online auto tuning (with adaptive magnetic flux observer)

^{*6} Regeneration unit (option) is necessary for regeneration

Long Life Components and Life Check Function

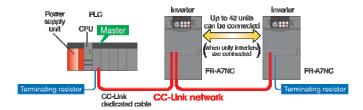
(1) Further extended components life

- The life of a newly developed cooling fan has been extended to 10 years of design life*1. The life of the cooling fan is further extended with ON/OFF control of the cooling fan.
- Longevity of capacitor was achieved with the adoption of a design life of 10 years 122. (A capacitor with specification of 5000 hours at 105 °C ambient temperature is adapted.)
 - *1 Ambient temperature: annual average 40°C (free from corrosive gas, flammable gas, Since the design life is a calculated value, it is not a guaranteed value.
 - *2 Output current: equivalent to rating current of the Mitsubishi standard motor (4 poles).
- Life indication of life components

Components	Life Guideline of the FR-A700	Guideline of JEMA ⁷³
Cooling fan	10 years	2 to 3 years
Main circuit smoothing capacitor	10 years	5 years
Printed board smoothing capacitor	10 years	5 years

^{*3} Excerpts from "Periodic check of the transistorized inverter" of JEMA (Japan Electrical Manufacturer's Association)

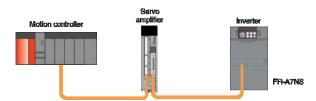
(2) State of the art longevity diagnostic method

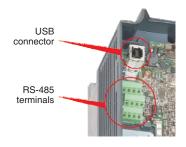

- Degrees of deterioration of main circuit capacitor, control circuit capacitor or inrush current limit circuit can be monitored.
- Since a parts life alarm can be output by self-diagnosis, troubles can be avoided.
- *4 Any one of main circuit capacitor, control circuit capacitor, inrush current limit circuit and cooling fan reaches the output level, an alarm is output. For the main circuit capacitor, the capacitor capacity needs to be measured during A stop by setting parameter.

Network Connection as You Desired

(1) Compatible with the CC-Link communication (option)

The inverter can be connected to the Mitsubishi PLC (Q, QnA, A series, etc.) through the CC-Link. It is compatible with the CCLink


(3) RS-485 and USB connection


- The RS-485 terminals are equipped as standard in addition to the PU connector.
- You can make RS-485 communication with the operation panel or parameter unit connected to the PU connector.
- Since the inverter can be connected to the network with terminals, multi-drop connection is also easily done.
- Modbus-RTU (Binary) protocol has been added for communications in addition to the conventional Mitsubishi inverter protocol (computer link).
- As a USB connector (USB1.1B connector) is standard equipped, communication with a personnel computer can be made with a USB cable only.
- Using the RS-485 terminal or USB connector, you can make communication by the FR-Configurator (setup S/W).

(2) Compatible with SSCNETIII (option) (available soon)

The inverter can be connected to Mitsubishi motion controller hrough the SSCNETIII. The SSCNETIII employs a high-speed synchronous serial communication system and is appropriate for the synchronous operation.

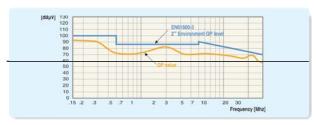
(SSCNET···Servo System Controller Network)

(4) Corresponds to major networks overseas

The inverter can be connected with networks such as Device-NET™, PROFIBUS-DP, LONWORKS, EtherNet (available soon), SSCNETIII and CANopen when communication options are used.

LONWORKS is a registered trademark of Echelon Corporation and DeviceNet is of ODVA Other company and product names herein are the trademarks of their

Free of Environmental Worries



(1) Reduction of electromagnetic noise (built-in EMC filter)

■ Reduction of noise generated from the inverter was achieved with adoption of a new technology (low-noise of switching power, low noise of inverter element).

■ Because of the newly developed built-in noise filter (EMC filter), the inverter itself can comply with the EMC Directive (2nd Environment ³). (To make the EMC filter of the inverter valid ¹, set ON/OFF connector ² to ON.)

- *1 Leakage current will increase when the EMC filter is selected.
- *2 Since the leakage current when using the EMC filter for the 200V class 0.4K and 0.75K is small, the filter is always valid (setting connector is not provided).
- *3 Refer to the EMC installation manual for compliance conditions.

	Capacitive Filter (Radio noise filter)	Zero-phase Reactor (Line noise filter)	DC Reactor
Type 01160 or less	Standard (built-in)	Standard (built-in)	Option (sell separately)
Type 01800 or more	Standard (built-in)	Option (sell separately)	Standard (provided)

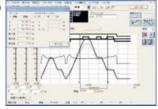
(2) Measures against harmonic leakage current

A compact AC reactor (FR-HAL) and a DC reactor (FR-HEL), which limit harmonics current flowing into the power supply and improve the power factor, are available as options. (For the 75K or more, a DC reactor is supplied as standard.)

 A high power factor converter (FR-HC, MT-HC) for effective suppressions of power-supply harmonics (conversion coefficient: K5=0) can be connected.

(3) Equipped with inrush current suppression circuit

Because of the built-in inrush current limit circuit, the current at power on can be restricted.


7

Simple Operation and Easy Maintenance

(1) Easy maintenance with FR-Configurator (Option)

- Parameter management (parameter setting, file storage, printing) is easy.
- Maintenance and setup of the inverter can be done from a personal computer connected with USB.
- Mechanical resonance is easily avoided with machine analyzer function.
- Parameter setting after replacement of the FRA500 series can be made with a parameter automatic conversion function.

(3) New type parameter unit FR-PU07 (option)

- An operation panel can be removed and a parameter unit can be connected.
- Setting such as direct input method with a numeric keypad, operation status indication, and help function are usable.
- Eight languages can be displayed.
- Parameter setting values of a maximum of three inverters can be stored.
- Since a battery pack type (available soon) is connectable, parameter setting and parameter copy can be performed without powering on the inverter.

(2) Operation panel with the popular setting dial

- Possible to copy parameters with operation panel.
 Parameter setting values are stored in the operation panel and optional parameter unit (FR-PU07).
- Operation is easy with the setting dial.

PU/EXT operation mode example

- Operation panel is detachable and can be installed on the enclosure surface. (cable connector option is required)
- PU/EXT (operation mode) can be switched with a single touch.
- A dial/key operation lock function prevents operational errors.

(4) Easy replacement with the cooling fan cassette

- Cooling fans are provided on top of the inverter.
- Cooling fans can be replaced without disconnecting main circuit wires.

(5) Removable terminal block

A removable terminal block was adapted. (The terminal block of the FR-A700 series is compatible with that of the FR-A500 series. Note that some functions of the FR-A700 series are restricted when using the terminal block of the FR-A500 series. Note that the wiring cover is not compatible.)

Rating

Series			FR-A7		00050	00000	20100	00470	00050	00010	00000	00470	00000	00770	22222	04400	
	Dated mater	100% avarland consoits	00023	00038	00052			00170					00620 30	00770		01160	
	Rated motor capacity	120% overload capacity 150% overload capacity	0.75 0.75	1.5 1.5	2.2	3.7 3.7	5.5 5.5	7.5 7.5	11 11	15 15	18.5 18.5	22 22	30	37 37	45 45	55 55	
	(KW) *1	200% overload capacity	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	
	` '	120% overload capacity	2.3	3.8	5.2	8.3	12.6	17	25	31	38	47	62	77	93	116	
	Rated current *3	150% overload capacity	2.1	3.5	4.8	7.6	11.5	16	23	29	35	43	57	70	85	106	
		200% overload capacity	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	
	Output capacity	120% overload capacity	1.8	2.9	4	6.3	9.6	13	19.1	23.6	29	35.8	47.3	58.7	70.9	88.4	
Output	(KVA) *2	150% overload capacity 200% overload capacity	1.6 1.1	2.7 1.9	3.7	5.8 4.6	8.8 6.9	12.2 9.1	17.5 13	22.1 17.5	26.7 23.6	32.8 29	43.4 33.5	53.3 43.4	64.8 54.1	80.8 65.5	
Output	Overload current	120% overload capacity		of rated c						17.5	23.0	29	33.3	43.4	34.1	05.5	
	rating *4	150% overload capacity		of rated c													
		200% overload capacity	150% (of rated c	urrent ca	pacity for	or 60 s;	200% fo	r 3 s*10								
	Voltage *5		3 Phas	e AC , 0	V to pow	er supp	ly voltag	е									
	Frequency range		0.2 - 40	00 Hz													
	Control method			VM contr													
				table fror se loop v			trol, adv	ance ma	ignetic f	lux vect	or contr	ol, real s	ensorles	s vector	control,		
	Regenerative bra	kina torawa		orque / 2		ritroi)				200/ +		ontinuou	*6	200/ to		ntinuous	
	Power supply vol			onque / 2 ohase 38		50Hz/6	∩H (-1	5% / 110	19/_ 1	20 /6 10	лцие с	Jillilluou:	>	20 /6 10	rque co	Hilliuous	
	Voltage range	aye		28V at 5			0112 (-1	J /6 / T IC	, 70)								
Input	Power supply free	nuency		HZ (± 5													
mpat	Rated input	120% overload capacity	2.5	4.5	5.5	9	12	17	20	28	34	41	52	66	80	100	
	capacity (KVA) *7	150% overload capacity	2.1	4	4.8	8	11.5	16	20	27	32	37	47	60	73	91	
		200% overload capacity	1.5	2.5	4.5	5.5	9	12	17	20	28	34	41	52	66	80	
	Cooling		Self co	oling		Fan co	ooling										
	Protective structu		IP20 *8	IP 00													
Others	Dimension in mm	,			150*26				60*170		00*190		00*190	325*550*19		550*250	
	Approximate mas	s (Kg)	3.8	3.8	3.8	3.8	3.8	7.1	7.1	7.5	7.5	13	13	23	35	35	
Series			FR-A7		02600	02250	02610	04320	04910	05470	06100	neosn	07700	08660	09620	10940	12120
	Rated motor	120% overlod capacity	90	110	132	160	185	220	250	280	315	355	400	450	500	550	630
	capacity (KW) *1	150% overlod capacity	75	90	110	132	160	185	220	250	280	315	355	400	450	500	560
		200% overlod capacity	55	75	90	110	132	160	185	220	250	280	315	355	400	450	500
	Rated current *3	120% overlod capacity 150% overlod capacity	180 144	216 180	260 216	325 260	361 325	432 361	481 432	547 481	610 547	683 610	770 683	866 770	962 866	1094 962	1212 1094
		200% overlod capacity	110	144	180	216	260	325	361	432	481	547	610	683	770	866	962
	Output capacity	120% overlod capacity	137	165	198	248	275	329	367	417	465	521	587	660	733	834	924
	(KVA) *2	150% overlod capacity 200% overlod capacity	110 100	137 110	165 137	198 165	248 198	275 248	329 275	367 329	417 367	465 417	521 465	587 521	660 587	733 660	834 733
			1100 110 137 165 196 246 275 329 367 417 465 521 367 660 735 110% of rated current capacity for 60 s; 120% for 3 s ^{*9}														
	Overload current	120% overlod capacity	110% (of rated c	urrent ca	nacity fo	or 60 s	120% fo	r 3 s*9	020	307	717	400	JZ 1	007		700
Outro d	Overload current	150% overlod capacity	120% (of rated c	urrent ca	pacity for	or 60 s; or 60 s;	120% for	r 3 s* ⁹ r 3 s* ¹⁰	020	307	717	400	JZ1	007		700
Output			120% d 150% d	of rated co of rated co of rated c	urrent ca urrent ca urrent ca	pacity for	or 60 s; or 60 s; or 60 s;	120% for 150% for 200% for	r 3 s* ⁹ r 3 s* ¹⁰	020	307	717	400	<i>321</i>	007		700
Output	Voltage *⁵	150% overlod capacity 200% overlod capacity	120% o 150% o 3 Phas	of rated confrated confrat	urrent ca urrent ca urrent ca	pacity for	or 60 s; or 60 s; or 60 s;	120% for 150% for 200% for	r 3 s* ⁹ r 3 s* ¹⁰	020	307	717	400	J21	007		700
Output	Voltage *5 Frequency range	150% overlod capacity 200% overlod capacity	120% (150% (3 Phas 0.2 - 40	of rated confrated confrat	urrent ca urrent ca urrent ca V to pow	apacity for apacity for apacity for over suppl	or 60 s; or 60 s; or 60 s; ly voltag	120% for 150% for 200% for e	r 3 s* ⁹ r 3 s* ¹⁰	020	307	717	400	JE I			700
Output	Voltage *⁵	150% overlod capacity 200% overlod capacity	120% (150% (3 Phas 0.2 - 4(Soft PV (Selec	of rated confrated confrat	urrent ca urrent ca urrent ca V to pow ol / high n among	apacity for apacity for apacity for apacity for er supplicarrier for a V/f con	or 60 s; or 60 s; or 60 s; ly voltag	120% for 150% for 200% for e	13 S*9 13 S*10 13 S*10								700
Output	Voltage *5 Frequency range Control method	150% overlod capacity 200% overlod capacity	120% (150% (3 Phas 0.2 - 4(Soft PV (Selec	of rated confrated confrat	urrent ca urrent ca urrent ca V to pow ol / high n among	apacity for apacity for apacity for apacity for er supplicarrier for a V/f con	or 60 s; or 60 s; or 60 s; ly voltag	120% for 150% for 200% for e	13 S*9 13 S*10 13 S*10								700
Output	Voltage *5 Frequency range	150% overlod capacity 200% overlod capacity	120% of 150% of 3 Phas 0.2 - 40 Soft PV (Select and close 120% for 90% of 150% of 150	of rated confirated co	urrent ca urrent ca urrent ca V to pow ol / high n among	pacity for apacity for apacity for supplication of the control of	or 60 s; or 60 s; or 60 s; ly voltag	120% for 150% for 200% for e	13 S*9 13 S*10 13 S*10								700
Output	Voltage *5 Frequency range Control method Regenerative bra	150% overlod capacity 200% overlod capacity	120% of 150% of 3 Phas 0.2 - 40 Soft PV (Select and closed continuous forque / contin	of rated confirmed confirm	urrent ca urrent ca urrent ca V to pow ol / high m among rector co	pacity for a pacity for a pacity for supplicant for a pacity for a pac	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% for 150% for 200% for e y control ance ma	r 3 s*10 r 3 s*10 r 3 s*10 r 3 s*10								700
Output	Voltage *5 Frequency range Control method Regenerative bra	150% overlod capacity 200% overlod capacity	120% of 150% o	of rated conformated conformat	urrent ca urrent ca urrent ca V to pow ol / high n among vector co rque / co 0 - 480V	pacity for appacity for supplication of the carrier for the carrier for the carrier of the carri	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% for 150% for 200% for e y control ance ma	r 3 s*10 r 3 s*10 r 3 s*10 r 3 s*10								700
	Voltage *5 Frequency range Control method Regenerative bra Power supply vol Voltage range	150% overlod capacity 200% overlod capacity aking torque	120% of 150% o	of rated confrated confrat	urrent ca urrent ca urrent ca urrent ca V to pow ol / high m among vector co rque / co 0 - 480V 0Hz/60H	pacity for appacity for supplication of the carrier for the carrier for the carrier of the carri	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% for 150% for 200% for e y control ance ma	r 3 s*10 r 3 s*10 r 3 s*10 r 3 s*10								
Output	Voltage *5 Frequency range Control method Regenerative bra Power supply vol Voltage range Power supply fre	150% overlod capacity 200% overlod capacity aking torque tage	120% (150% (250% (of rated confirated co	urrent ca urrent ca urrent ca V to pow ol / high n among rector co rque / co 0 - 480V 0Hz/60H %)	apacity for apacity for apacity for apacity for apacity for a supplication of a supplication of apacity for apacit	or 60 s; or 60 s; or 60 s; dy voltag requenc trol, adv	120% foi 150% foi 200% foi e y control ance ma	r 3 s*9 r 3 s*10 r 3 s*10 r 3 s*10	lux vect	or contr	ol, real s	ensorles	s vector	control,		
	Voltage *5 Frequency range Control method Regenerative bra Power supply vol Voltage range	150% overlod capacity 200% overlod capacity uking torque tage quency 120% overload capacity	120% of 150% o	of rated confrated confrat	urrent ca urrent ca urrent ca urrent ca V to pow ol / high m among vector co rque / co 0 - 480V 0Hz/60H	pacity for appacity for supplication of the carrier for the carrier for the carrier of the carri	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% for 150% for 200% for e y control ance ma	r 3 s*10 r 3 s*10 r 3 s*10 r 3 s*10								924 833
	Voltage *5 Frequency range Control method Regenerative bra Power supply vol Voltage range Power supply fre Rated input	150% overlod capacity 200% overlod capacity uking torque tage quency 120% overload capacity	120% of 150% of 3 Phas 0.2 - 40 (Select and clo 20% forque / continuou Three p 323 - 5 50 / 60 37 110 100	of rated confrated confrat	urrent ca urrent ca urrent ca V to pow ol / high m among rector co rque / co 0 - 480V 0Hz/60H %)	apacity for apacity for supplication for	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% foi 150% foi 200% foi e y control ance ma	r 3 s*9 r 3 s*10 r 3 s*10 r 3 s*10	lux vect	or contr	ol, real s	ensorles 586	es vector	control,	833	924
	Voltage *5 Frequency range Control method Regenerative bra Power supply vol Voltage range Power supply fre Rated input capacity (KVA) *7 Cooling	150% overlod capacity 200% overlod capacity aking torque tage quency 120% overload capacity 150% overload capacity 200% overload capacity	120% of 150% of 3 Phas 0.2 - 40 Soft PV (Select and clot 20% / continuou Three p 323 - 5 50 / 60 37 110 100 Fan co	of rated confrated confrat	urrent ca urrent ca urrent ca V to pow ol / high n among vector co rque / co 0 - 480V 0Hz/60H %) 198 165	apacity for pacity for pacity for supplicarrier figure for pacity for conntrol) and pacity for supplicarrier figure for pacity for supplicarrier figure for pacity for supplicarrier figure for supplicarrier figure for supplicarrier for s	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% for 150% for 150	r 3 s*9 r 3 s*10 r 3 s*10 r 3 s*10 agnetic f	416 366	or contr 464 416	ol, real s 520 464	ensorles 586 520	660 586	control, 733 659	833 733	924 833
Input	Voltage *5 Frequency range Control method Regenerative bra Power supply vol Voltage range Power supply fre Rated input capacity (KVA) *7 Cooling Protective structu	150% overlod capacity 200% overlod capacity aking torque tage quency 120% overload capacity 150% overload capacity 200% overload capacity	120% of 150% of 3 Phas 0.2 - 40 Soft PV (Select and clot 20% / continuou Three p 323 - 5 50 / 60 37 110 100 Fan co IP00	of rated cof rat	urrent ca urrent ca urrent ca V to pow ol / high n among vector co rque / co 0 - 480V 0Hz/60H %) 198 165 137	apacity for apacit	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% foi 150% foi 200% foi e y control ance ma 5% / +10 329 275 248	r 3 s* ⁹ r 3 s* ¹⁰ r 3 s* ¹⁰ r 3 s* ¹⁰ sgnetic f	416 366 329	464 416 367	ol, real s 520 464 417	ensorles 586 520 465	660 586 521	733 659 587	833 733 660	924 833 733
	Voltage *5 Frequency range Control method Regenerative bra Power supply vol Voltage range Power supply fre Rated input capacity (KVA) *7 Cooling	150% overlod capacity 200% overlod capacity aking torque tage quency 120% overload capacity 150% overload capacity 200% overload capacity are 0 (W*H*D)	120% of 150% of 3 Phas 0.2 - 40 Soft PV (Select and clot 20% / continuou Three p 323 - 5 50 / 60 37 110 100 Fan co	of rated cof rat	urrent ca urrent ca urrent ca V to pow ol / high n among vector co rque / co 0 - 480V 0Hz/60H %) 198 165	apacity for apacit	or 60 s; or 60 s; or 60 s; ly voltag requenc trol, adv	120% foi 150% foi 200% foi e y control ance ma 5% / +10 329 275 248	r 3 s*9 r 3 s*10 r 3 s*10 r 3 s*10 agnetic f	416 366 329	or contr 464 416	ol, real s 520 464 417	ensorles 586 520 465	660 586	733 659 587	833 733	924 833 733

Remarks

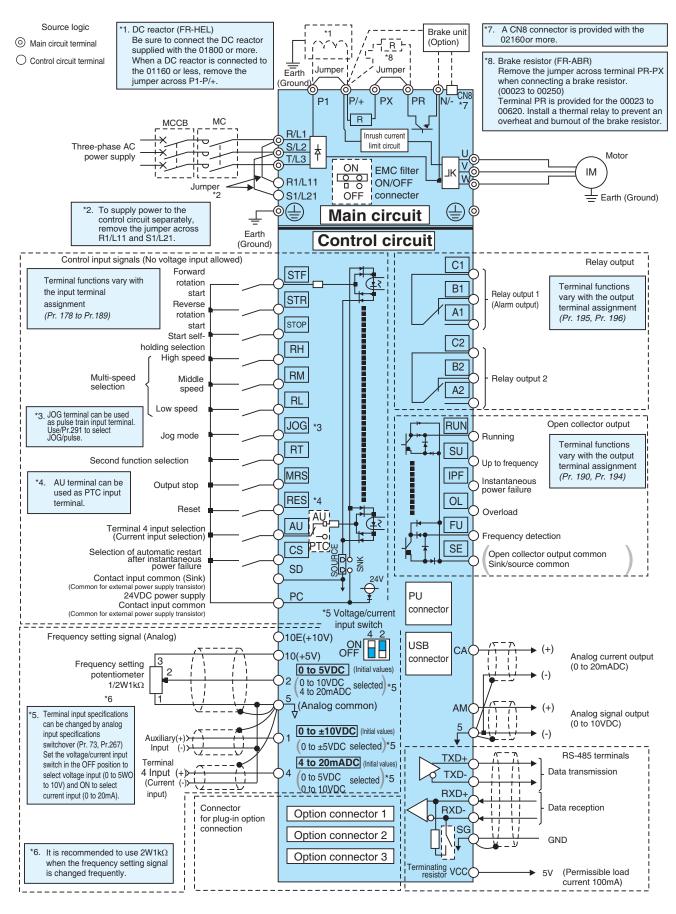
- 1 The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi 4pole standard motor.
- 2 The rated output capacity indicated assumes that the output voltage is 440 V.
- 3 The % value of the overload current rating indicates the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperature under 100% load.
- 4 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the pulse voltage value of the inverter output side voltage remains unchanged at about √2 that of power supply.
- With high duty brake resistor, the 00023 to 00250 & 00310 to 00620 will achieve the performance of 100% torque / 10%ED & 100% torque / 6% ED respectively.
- 6 The power supply capacities varies with the value of the power supply side inverter impendence (including those of the input reactor and cables).
- When the hook of the inverter front cover is cut off for installation of plug-in option, the inverter changes to an open type (IP00).
- 8 FR-DU07 : IP40 (except for the PU connector)
- 9 Max. ambient temperature 40° C Inverse time characteristics.
- 10~ Max. ambient temperature 50° C Inverse time characteristics.

• Details of Factory Supplied DC Link Chokes

Application (Invertor)	D0	Dimer	nsions	in mm	weight	Application (Inverter)	DO	Dimer	weight		
Application (Inverter)	DC reactor	W	Н	D	Kg	Application (inverter)	DC reactor	W	Н	D	Kg
FR-A740-01800-IN	FR-HEL-H90K	150	340	190	20	FR-A740-06100-IN	FR-HEL-H315K	210	495	250	42
FR-A740-02160-IN	FR-HEL-H110K	150	340	195	22	FR-A740-06830-IN	FR-HEL-H355K	210	495	250	46
FR-A740-02600-IN	FR-HEL-H132K	175	405	200	26	FR-A740-07700-IN	FR-HEL-H400K	235	500 ±10%	250	50
FR-A740-03250-IN	FR-HEL-H160K	175	405	205	28	FR-A740-08660-IN	FR-HEL-H450K	240	500 ±10%	270	57
FR-A740-03610-IN	FR-HEL-H185K	175	405	240	29	FR-A740-09520-IN	FR-HEL-H500K	-	345	455	67
FR-A740-04320-IN	FR-HEL-H220K	175	405	240	30	FR-A740-10940-IN	FR-HEL-H560K	-	360	460	85
FR-A740-04810-IN	FR-HEL-H250K	190	440	250	35	FR-A740-12120-IN	FR-HEL-H630K	-	360	460	95
FR-A740-05470-IN	FR-HEL-H280K	190	440	255	38						

Brake resistor specifications 400V Class

400V Class		
Madal	Resistance	Power
Model	Ohm	W*
FR-A740-00023-IN	1200	45
FR-A740-00038-IN	700	75
FR-A740-00052-IN	350	115
FR-A740-00083-IN	250	120
FR-A740-00126-IN	150	155
FR-A740-00170-IN	110	185
FR-A740-00250-IN	75	340
FR-A740-00310-IN	52	1000
FR-A740-00380/00470-IN	36	1500
FR-A740-00620-IN	26	2200


* Wattage rating will change with respect to brake duty & brake torque

Common specifications

FR-A740			Description					
	Control method		Soft-PWM control/high carrier frequency PWM control (selectable from among V/F control, advanced magnetic flux vector control and real sensorless vector control) / vector control*					
	Frequency setting resolution	Analog input	0.015 Hz / 0-50 Hz (terminal 2, 4:0-10 V / 12 bit) 0.03 Hz / 0-50 Hz (terminal 2, 4:0-5 V / 11 bit, 0-20mA / 11 bit, terminal 1: -10-+10V / 12 bit) 0.06 Hz / 0-50 Hz (terminal 1:0-±V / 11 bit)					
		Digital Input	0.01 Hz					
	Frequency accuracy		± 0.2 % of the maximum output frequency (temperature range 25° \pm 10°C) via analog input; ± 0.01 % of the set output frequency (via digital input)					
	Voltage / frequency characteristics		Base frequency adjustable from 0 to 400 Hz; selection between constant torque, variable torque or optional flexible 5-point V/f characteristics					
Control Specifi-	Starting torque		200 % 0.3 Hz (00023 to 00126), 150 % 0.3 Hz (00170 or more) (under real sensorless vector control or vector control)					
cations	Torque boost		Manual torque boost					
	Acceleration / c	leceleration time	0;0.1 to 3600s (can be set individually), linear or S-pattern acceleration/deceleration mode, backlash measures acceleration/deceleration can be selected.					
	Acceleration / de	eceleration characteristics	Linear or S-form course, user selectable					
	DC injection bra	ke	Operating frequency (0-120 Hz), operating time (0-10 s) and operating voltage (0-30 %) can be set individually. The DC brake can also be activated via the digital input					
	Stall prevention	operation level	Operation current level can be set (0 to 220 % adjustable), whether to use the function or not can be selected					
	Motor protection		Electronic motor protection relay (rated current user adjustable)					
	Torque limit leve		Torque limit value can be set (0 to 400 % variable)					
	Frequency	Analog input	Terminal 2, 4:0-5 V DC, 0-10 V DC, 0/4-20 mA Terminal 1:0-±5 V DC, 0-±10V DC					
	setting values	Digital Input	Input using the setting dial of the operation panel or parameter unit Four-digit BCD or 16 bit binary (when used with option FR-A7AX)					
	Start signal		Available individually for forward rotation and reverse rotation. Start signal automatic self-holding input (3-wire input) can be selected.					
	Input signals Common		Any of 12 signals can be selected using parameters 178 to 189 (input terminal function selection): from among multi speed selection, remote setting, stop-on-contact, second function selection, third function selection, terminal 4 input selection, JOG operation selection, selection of automatic restart after instantaneous power failure, flying start, external thermal relay input, inverter operation enable signal (FR-HC/FR-CV connection), FR-HC connection (instantaneous power failure detection), PU operation/external inter lock signal, external DC injection brake operation start, PID control enable terminal, brake opening completion signal, PU operation/external operation switchover, load pattern selection forward rotation reverse rotation boost, V/F switching, load torque high-speed frequency, S-pattern acceleration / deceleration C switchover, pre-excitation, output stop, start self-holding selection, control mode changing, torque limit selection, star-time tuning start external input, torque bias selection, 1, 2**, P/PI control switchover, forward rotation command, reverse rotation command, inverter reset, PTC thermistor input, PID forward reverse operation switchover, PU-NET operation switchover, NET-external operation switchover, and command source switchover					
		Pulse train input	100 kpps					
Control signals for operation		Operating status	Any of 7 signals can be selected using parameter 190 to 196 (output terminal function selection): from among inverter running, up-to frequency, instantaneous power failure / undervoltage, overload warning, output frequency (speed) detection, second output frequency (speed) detection, third output frequency (speed) detection, regenerative brake prealarm, electronic thermal relay function pre-alarm, PU operation mode, inverter operation ready, output current detection, zero current detection, PID lower limit, PID upper limit, PID forward rotation reverse rotation output, commercial power supply-inverter switchover MC1, commercial power supply-inverter switchover MC3, orientation completion*; brake opening request, fan fault output, heatsink overheat pre-alarm, inverter running / start command on, deceleration at an instantaneous power failure, PID control activated, during retry, PID output interruption, life alarm, alarm output 1, 2, 3 (power-off signal), power savings average value update timing, current average monitor, maintenance timer alarm, remote output, forward rotation output*, reverse rotation output*, low speed output, torque detection, regenerative status output*, start-time tuning completion, in-position completion*, minor failure output and alarm output. Open collector output (5 point), relay output (2 points) and alarm code of the inverter can be output (4 bit) from the open collector					
	Output signals	When using the FR- A7AY, FR-A7AR option	In addition to the above operating modes parameters 313-319 (function selection for the additional 7 output terminals) can also be used to assign the following four signals: control circuit capacitor life, main circuit capacitor life, cooling fan life, inrush current limit circuit life (Only positive logic can be set for extension terminals of the FR-A7AR)					
		Analog output	You can select any signals using Pr. 54 CA and Pr. 158 AM terminal function selection (analog output) from among output frequency, motor current (steady or peak value), output voltage, frequency setting, operation speed, motor torque, converter output voltage (steady or peak value), electronic thermal relay function load factor, input power, output power, load meter, motor excitation current, reference voltage output, motor load factor, power saving effect, regenerative brake duty, PID set point, PID measured value, motor output, torque command, torque current command, and torque monitor.					
Di.	Control unit display	Operating state	Output frequency, motor current (steady or peak value), output voltage, frequency setting, running speed, motor torque, overload, converter output voltage (steady or peak value), electronic thermal relay function load factor, input power, output power, load meter, motor excitation current, cumilative energization time, actual operation time, motor load factor, cumulative power, energy saving effect, cumulative saving power, regenerative brake duty, PID set point, PID measured value, PID deviation, inverter I/O terminal monitor, input terminal option monitor*, output terminal option monitor*, option fitting status*, terminal assignment status*, torque command, torque current command, feed back pulse*, motor output					
Display	(FR-PU07/ FR-DU07)	Alarm definition	Alarm definition is displayed when the protective function is activated, the output voltage/current/frequency/cumulative energization time right before the protection function was activated and the past 8 alarm definitions are stored.					
		Interactive guidance	Operation guide/trouble shooting with a help function*3.					
	Ambient Tempe	erature	-10°C to +50°C (non-freezing)					
	Ambient humid		90%RH maximum (non-condensing)					
Environ-	Storage temper	•	-20°C to +65°C					
ment	Atmosphere		Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt etc.)					
	Altitude/vibratio	n	Maximum 1000m above sea level, 5.9m/s ² or less ^{∗5} (conforms to JIS C 60068-2-6)					

- *1. Only when the option (FR-A7AP) is mounted
 *2. Can be displayed only on the operation panel (FR-DU07).
 *3. Can be displayed only on the parameter unit (FR-PU07/FR-PU04).
 *4. Temperature applicable for a short period in transit, etc.
 *5. 2.9m/s² or less for the 160K or more.

Terminal Connection Diagram

CAUTION

- To prevent a malfunction caused by noise, separate the signal cables more than 10cm from the power cables.
- Be sure to earth (ground) the inverter and motor before use.
- This connection diagram assumes that the control circuit is source logic (initial setting). Refer to the instruction manual for the connection in the case of sink logic

Terminal Assignment of Main Circuit & Signal Terminals

Function	Terminal	Designation	Description
	L1, L2, L3,	Mains supply connection	Mains power supply of the inverters (380-480 V AC, 50/60 Hz)
	P/+, PR	Brake resistor connection	An optional brake resistor (FR-ABR) can be connected across these terminals. The PR terminal is provided only for type 00023 - 00620.
	P/+, N/-	Brake unit connection	A brake unit (FR-BU and BU,MT-BU5), power regeneration common converter (FR-CV) or regeneration common converter (MT-RC) and high power factor converter (FR-HC, MT-HC) can be connected to these terminals.
Main circuit connection	P/+,P1	DC reactor connection	For type 00023 - 01160 a DC reactor can be connected to these terminals. (For 01800 or above a DC reactor is supplied as standard)
	PR, PX	Built-in brake circuit connection	When the jumper is connected across terminals PR and PX (initial status), the built-in brake reactor circuit is valid. The PX terminal is provided only for type 00023 - 00250.
	U, V, W	Motor connection	Voltage output of the inverter (3-phase, 0 V up to power supply voltage, 0.5-400 Hz)
	L11, L21	Power supply for control circuit	
	CN8	Ext. brake transistor control PE	Control connection for the MT-BU5 external brake module Protective earth connection of inverter
	STF	Forward rotation start	The motor rotates forward, if a signal is applied to terminal STF
	STR	Reverse rotation start	The motor rotates reverse, if a signal is applied to terminal STR
	STOP	Start self-retaining selection	The start signals are self-retaining, if a signal is applied to terminal STOP
	RH, RM, RL	Multi-speed selection	Preset of 15 different output frequencies according to the combination of the RH, RM and RL signals
	JOG	Jog mode selection	The JOG mode is selected, if a signal is applied to this terminal (factory setting). The start signals STF and STR determine the rotation direction.
Control	ood	Pulse train input	The JOG terminal can be used as pulse train input terminal (parameter 291 setting needs to be changed)
connection	RT	Second parameter settings	A second set of parameter settings is selected, if a signal is applied to terminal RT.
(progra- mmable)	MRS	Output stop	The inverter lock stops the output frequency without regard to the delay time.
,	RES	RESET input	An activated protective circuit is reset, if a signal is applied to the terminal RES (t > 0,1 s).
		Current input selection	The 0/4-20mA signal on terminal 4 is enabled by a signal on the AU terminal
	AU	PTC input	If you connect a PTC temperature sensor you must assign the PTC signal to the AU terminal and set the slide switch on the control circuit board to the PTC position.
	CS	Automatic restart after instanta- neous power failure	The inverter restarts automatically after a power failure, if a signal is applied to the terminal CS
Common	SD	Reference potential (OV) for the PC terminal (24V)	When "sink" control logic is selected by setting the control signal jumper a specific control function is triggered when the corresponding control terminal is connected to the PC terminal. When "source" control logic is selected and you are using external 24V power you must connect the 0V of the external power supply to terminal SD. The SD terminal is isolated from the terminals 5 and SE with optocouplers.
	PC	24 V DC output	Internal power supply 24 V DC/0, 1 A output
	10 E		Output voltage 10 V DC. Max. output current 10 mA
		Voltage output for	Recommended potentiometer: 1 kΩ, 2 W linear
	10	potentiometer	Output voltage 5 V DC Max. output current 10 mA. Recommended potentiometer: 1kΩ, 2 W linear
Setting	2	Input for frequency setting value signal	The setting value 0 to 5 V DC (or 0-10 V, 0/4-20mA) is applied to this terminal. You can switch between voltage and current setpoint values with parameter 73. The input resistance is $10k\Omega$
value specifi- cation	5	Frequency setting common and analog outputs	Terminal 5 provides the common reference potential (0V) for all analog set point values and for the analog output signals CA (current) and AM (voltage). The terminal is isolated from the digital circuit's reference potential (SD). This terminal should not be grounded
	1	Auxiliary input for frequency setting value signal 0-±5 (10) V DC	An additional voltage setting value signal of 0- \pm 5 (10) V DC can be applied to terminal 1. The voltage range is preset to 0- \pm 10 V DC. The input resistance is $10k\Omega$
	4	Input for setting value signal	The setting value 0/4-20 mA or 0-10 V is applied to this terminal. You can switch between voltage and current setpoint values with parameter 267. The input resistance is 250Ω . The current setting value is enabled via terminal function AU.
	A1, B1, C1	Potential free relay output 1 (Alarm)	The alarm is output via relay contacts. The block diagram shows the normal operation and voltage free status. If the protective function is activated, the relay pick up. The maximum contact load is 200 V AC/0.3 A or 30 V DC/0.3 A
	A2, B2, C2	Potential free relay output 2	Any of the available 42 output signals can be used as the output driver. The maximum contact load is 230V AC /0.3 A or 30 V DC / 0.3A.
	RUN	Signal output for motor operation	The output is switched low, if the inverter output frequency is equal to or higher than the starting frequency. The output is switched high, if no frequency is output or the DC brake is in operation.
	SU	Signal output for frequency setting value/current value comparison	The SU output supports a monitoring of frequency setting value and frequency current value. The output is switched low, once the frequency current value(output frequency of the inverter)approaches the frequency setting value(determined by the setting value signal) within a preset range of tolerance.
Signal output	IPF	Signal output for instantaneous power failure	The output is switched low for a temporary power failure within a range of 15ms≤-tiPF≤100ms or for under voltage.
(progra- mmable)	OL	Signal output for overload alarm	The OL is switched low, if the output current of the inverter exceeds the current limit preset in parameter 22 and the stall prevention is activated. If the output current of the inverter falls below the current limit preset in parameter 22, the signal at the OL output is switched high.
	FU	Signal output for monitoring output frequency	The output is switched low once the output frequency exceeds a value preset in parameter 42(or 43). Otherwise the FU output is switched high.
	SE	Reference potential for signal outputs	The potential that is switched via open collector outputs RUN, SU,OL,IPF and FU is connected to this terminal.
	CA	Analog signal output	
	AM	0-20 mA DC Analog signal output 0-10 V DC (1mA)	One of 18 monitoring function can be selected, e.g. external frequency output. CA and AM output can be used simultaneously. The function are determined by parameters.
	-	PU connector	A parameter unit can be connected. Communications via RS485 I/O standard: RS485, Mulit-Drop operation, 4,800-38,400 Baud (overall length: 500m)
Interface	-	RS 484 terminal (via RS485 terminal)	Communications via RS485 I/O standard: RS485, Mulit-Drop operation, 300-38, 400 Baud (overall length: 500m)
	-	USB connector	This USB interface is used to connect the inverter to a personal computer(conforms to USB1.1)

Option List

		Name		Туре	Applications, Specifications, etc.	Applicable Inverter
	Vector co	ontrol			Vector control with encoder can be performed.	
	Orientati	ion/encoder		FR-A7AP	The main spindle can be stopped at a fixed position (orientation) in combination with a pulse encoder. The motor speed is sent back and the speed is maintained constant.	
	16-bit digital input		FR-A7AX	This input interface sets the high frequency accuracy of the inverter using an external BCD or binary digital signal. BCD code 3 digits (maximum 9990) BCD code 4 digits (maximum 9999) Binary 12 bits (maximum FFFH) Binary 16 bits (maximum FFFFH)		
ype				Output signals provided with the inverter as standard are selected to output from the open collector.	Shared among all models	
Plug-in Type	Digital of Extension	utput on analog output		FR-A7AY	 This option adds 2 different signals that can be monitored at the terminals AM0 and AM1, such as the output frequency, output voltage and output current. 20mADC or 10VDC meter can be connected. 	
	Relay ou	utput		FR-A7AR	 Output any three output signals available with the inverter as standard from the relay contact terminals. 	
	noi	CC-Link		FR-A7NC	This option allows the inverter to be operated or monitored	
	nicat	LONWORKS		FR-A7NL	or the parameter setting to be changed from a computer or PLC.	
	Communication	DeviceNet		FR-A7ND	*For the FR-A7NC (CC-Link), the above operations can be done from the	
	ē	PROFIBUS-DP		FR-A7NP	PLC only.	
	Paramet	ter unit (8 langua	ges)	FR-PU07 / FR-PU04	Interactive parameter unit with LCD display	
	Paramet	ter unit connection	n cable	FR-CB20	Cable for connection of operation panel or parameter unit indicates a cable length. (1m, 3m, 5m)	Shared among all
	Operation	on panel connecti or	on	FR-ADP	Connector to connect the operation panel (FR-DU07) and connection cable	models
þ	Cable for encoder Mitsubishi vector control dedicated motor (SF-V5RU)			FR-V7CBL	Connection cable for the inverter and encoder for Mitsubishi vector control dedicated motor (SF-V5RU). indicates a cable length. (1m, 3m, 5m)	
	Heatsink protrusion attachment		FR-A7CN01 to 11	The inverter heatsink section can be protruded outside of the rear of the enclosure.	FR-A720-1.5K to 90K FR-A740-0.4K to 132K According to capacities	
e Share		Intercompatibility attachment		FR-AAT24	Attachment for replacing with the A700 series using the installation holes of the FR-A500 series.	FR-A740-11K, 15K
Stand-alone Shared	Intercom			FR-A5AT	Attachment for replacing with the FR-A700 series using the installation holes of the FR-A100 <excellent> and FR-A200<excellent></excellent></excellent>	According to capacities
	AC reac	tor		FR-HAL	For harmonic suppression measures and improvement of inverter input power factor (total power factor approx. 88%)	According to capacities
	DC reac	tor		FR-HEL	For harmonic suppression measures and improvement of inverter input power factor (total power factor approx. 93%)	Compatible with the 55K or less
	Line nois	se filter		FR-BSF01 FR- BLF	For line noise reduction	Shared among al models
	High-dut	ty brake resistor		FR-ABR	For improvement of braking capability of the built-in brake of the inverter	Compatible with the 22K or less
	Brake ur Resistor			FR-BU2 FR-BR	For increasing the braking capability of the inverter (for high-inertia load or negative load)	Compatible with the 55K or less Connected as per
					Brake unit and resistor unit are used in combination	capacity
	Converte Stand-al	Power regeneration common Converter Stand-alone reactor dedicated for the FR-CV		FR-CV FR-CVL	Unit which can return motor-generated braking energy back to the power supply in common converter system	Compatible with the 55K or less
nared	Power re	egeneration conv	verter	MT- RC	Energy saving type high performance brake unit which can regenerate the braking energy generated by the motor to the power supply.	Compatible with the 75K or more
Stand-alone Shared	High po	wer factor conve	ter	FR-HC	The high power factor converter switches the converter section on/off to reshape an input current waveform into	Compatible with the 55K or less
Stand-	gr/ pot			мт-нс	a sine wave, greatly suppressing harmonics. (Used in combination with the standard accessory.)	Compatible with the 75K or more
	Surge vo	oltage suppression	ı filter	FR-ASF	Filter for suppressing surge voltage on motor	Compatible with the 400V class 55K or less
		ve filter	Reactor	MT- BSL (-HC)	Reduce the motor noise during inverter driving Use in combination with a reactor and a capacitor	Compatible with the 75K or more

Protective Functions

	Function Name	Display
	Operation panel lock	HOLd
Error Message	Parameter write error	Er 1 to Er 4
*2	Copy operation error	r E to r E Y
	Error	Err.
	Stall prevention (overcurrent)	0L
	Stall prevention (overvoltage)	οL
	Regenerative brake prealarm	rb
Warnings	Electronic thermal relay function prealarm	LH
*3	PU stop	PS
	Maintenance signal output	nr
	Parameter copy	EP.
	Speed limit display (output during speed limit)	SL
Minor Failure *4	Fan fault	Fn
	Overcurrent shut-off during acceleration	E.DC I
	Overcurrent shut-off during constant speed	5.00.3
	Overcurrent shut-off during deceleration or stop	E.D.C.3
	Regenerative overvoltage shut-off during acceleration	E.O o 1
	Regenerative overvoltage shut-off during constant speed	S.00.3
	Regenerative overvoltage shut- off during deceleration or stop	E.D u 3
	Inverter overload shut-off (Electronic thermal relay Function) *1	8.Г.Н.Г
	Motor overload shut-off (Electronic thermal relay Function) *1	8.Г.НП
Major failures	Fin overheat	8.81 m
*5	Instantaneous power failure protection	EJ PF
	Undervoltage protection	ε.υυΓ
	Input phase failure	EJ LF
	Stall prevention	€.DL Г
	Brake transistor alarm detection	ε. δε
	Output side earth (ground) fault overcurrent protection	E. GF
	Output phase failure protection	E. LF
	External thermal relay operation *6	€.ОНГ
	PTC thermistor operation	<i>Е.РГС</i>
	Option alarm	E.0PF
	Communication option alarm	E.DP3

	Function Name	Display
	Option alarm	E. 1 to E. 3
	Parameter storage device alarm	E. PE
	PU disconnection	E.PUE
	Retry count excess	E.r.E.F
	Parameter storage device alarm	<i>€.₽€.</i> 2
	CPU error	ε. δ/ ε. η/ε.CPU
	Operation panel power supply short circuit RS-485 terminals power supply short circuit	E.C.T.E
	24VDC power output short Circuit	8.824
	Output current detection value excess	06 3.3
Major failures *5	Inrush resistor overheat	EJ OH
	Communication alarm (inverter)	8.58 r
	Analog input error	E.R1 E
	Overspeed occurrence *7	<i>E.</i> 05
	Speed deviation excess detection *7	E.05a
	Open cable detection *7	E.E.C.F
	Position error large *7	E. 08
	Brake sequence error	E.NB 1 to E.NB 1
	Encoder phase error *7	E.E.P
	Internal circuit error	ε. 13
	USB error	<i>E.</i> US <i></i> 6
	Opposite rotation deceleration alarm	Ε. ΙΙ

- *1. Resetting the inverter initializes the internal thermal integrated data of the electronic thermal relay function.
- $\ensuremath{^{\diamond}}\xspace$. The error message shows an operational error. The inverter output is not shut off.
- *3. Warnings are messages given before major failures occur. The inverter output is not shut-off.
- *4. Minor failure warns the operator of failures with output signals. The inverter output is not shut-off.
- *5. When major failures occur, the protective functions are activated to shut-off the inverter output and output the alarms.
- *6. The external thermal operates only when the OH signal is set in Pr.178 to Pr.189 (input terminal function selection).
- *7. Appears when the FR-A7AP (option) is fitted.

Textile

Automotive

Pharma

Mitsubishi Electric India Pvt. Ltd.

Factory Automation & Industrial Division

FAID Head Office: Emerald House, EL-3, J Block, M.I.D.C. Bhosari, Pune - 411026, INDIA
Tel: +91-20-2710 2000 Fax: +91-20-2710 2100
Email: marketing.FA1@mei-india.com
Web: www.MitsubishiElectric.in